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Abstract

We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a var-
iable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discon-
tinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation
laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of
two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth,
momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver
is endowed with several desirable properties simultaneously. This solver is well-balanced: it maintains a large class of
steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution
that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth
non-negativity and extends naturally to Riemann problems with an initial dry state. These are important properties for
applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVe-
que’s wave propagation algorithm [R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems,
J. Comput. Phys. 131 (1997) 327–335] is also described. Several numerical simulations are shown, including a test problem
for tsunami modeling.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The shallow water equations are a well known system of hyperbolic conservation laws, often with a source
term, which in one dimension take the form
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ht þ ðhuÞx ¼ 0; ð1aÞ

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ �ghbx; ð1bÞ
where g is the gravitational constant, hðx; tÞ is the fluid depth, uðx; tÞ is the vertically averaged horizontal fluid
velocity, and bðxÞ is the bottom surface elevation or bathymetry. Simple approximate Riemann solvers, de-
scribed in Section 3, are used in the wave propagation methods that we use to solve hyperbolic systems. These
methods belong to the class of finite volume Godunov-type methods and are described briefly in Section 2. We
developed the augmented solver presented here while using shock capturing methods for tsunami modeling
(e.g. [29,15,14,16]), due to the inadequacies of standard solvers for this application. Tsunami modeling de-
mands certain properties of Riemann solvers, such as the preservation of delicate steady states and the main-
tenance of depth non-negativity in the Riemann solution, along with other standard properties sought in
Riemann solvers such as suitable shock wave approximation and entropy requirements (for representing tur-
bulent bores). See [4,27,36] for an overview of these latter topics. Additionally, inundation modeling requires
Riemann solvers that generalize to problems with an initial dry state, as would occur right at the shoreline.

Non-trivial steady state solutions to (1) are physically prevalent in many shallow water applications and
exist due to a balance of the flux divergence and the momentum source term due to variable bathymetry. This
situation arises more generally for hyperbolic systems of the form
qt þ f ðqÞx ¼ wðq; xÞ; ð2Þ

where q 2 Rm is a vector of conserved quantities, f ðqÞ 2 Rm is the vector of corresponding fluxes, and
wðq; xÞ 2 Rm is a vector of source terms. Numerically preserving non-trivial steady states, or resolving small
perturbations to them, when
f ðqÞx � wðq; xÞ ð3Þ

yet both terms are relatively large, is a well known difficulty and one that has received considerable attention.
See, for instance, [2,3,19,20,24,26]. For tsunami modeling this problem is particularly prevalent since the ocean
at rest exhibits such a balance. Furthermore, in the deep ocean the depth h is several kilometers while a prop-
agating tsunami typically has an amplitude of around a meter. With practical grid resolutions the traditional
practice of fractional step integration of the source term can produce spurious waves of much greater magni-
tude than the actual tsunami.

An additional difficulty arises for many shallow water applications—the appearance and movement of dry
regions with vanishing or zero depth. Preserving depth non-negativity while maintaining mass conservation is
particularly difficult with most standard Riemann solvers. Again, this situation is exacerbated for tsunami
modeling since numerical accuracy in the shallow inundation region is of the most interest, and this region
also presents numerical difficulties such as shocks (representing turbulent bores) and drainage.

Developing well-balanced Riemann solvers specifically for the shallow water equations and the ocean at
rest steady state in the presence of dry regions and variable bathymetry is an active topic of research. See,
for instance, [2,11,12,5–7,31–33]. The solver presented in this paper appears to accomplish these goals for a
larger class of problems in a more accurate and robust manner and has been applied to real flood and tsunami
problems. The source code for the problems presented in this paper will be made available at the author’s web-
site. Adaptive two-dimensional software is also freely available and part of the GEOCLAW software project [28].
2. The wave propagation algorithm

The methods described in this paper are implemented with the high resolution wave propagation algorithms
developed by LeVeque [25,27], briefly described below. These methods are Godunov-type finite volume meth-
ods, i.e., methods making use of Riemann problems to determine the numerical update at each time step.
Godunov’s original method [17] uses the Riemann solutions to determine cell interface fluxes at each time step.
Rather than using interface fluxes directly, in LeVeque’s wave propagation algorithm the waves arising in Rie-
mann solutions are directly re-averaged onto adjacent grid cells in order to update the numerical solution.
LeVeque’s method is therefore applicable to hyperbolic systems of the form



D.L. George / Journal of Computational Physics 227 (2008) 3089–3113 3091
qt þ Aðq; xÞqx ¼ 0; ð4Þ

where q 2 Rm and Aðq; xÞ 2 Rm�m, which include conservation laws
qt þ f ðqÞx ¼ 0; ð5Þ

where Aðq; xÞ ¼ AðqÞ ¼ f 0ðqÞ, as well as non-conservative systems where there is no flux function. The first or-
der one-dimensional wave propagation method has the form
Qnþ1
i ¼ Qn

i �
Dt
Dx
ðAþDQn

i�1=2 þA�DQn
iþ1=2Þ; ð6Þ
where Qn
i is a numerical approximation to 1

Dx

R
Ci

qðx; tnÞdx, with Ci ¼ ½xi�1=2; xiþ1=2�, Dx ¼ ðxiþ1=2 � xi�1=2Þ and
Dt ¼ ðtnþ1 � tnÞ. The fluctuations A�DQn

i�1=2 are determined by solutions to Riemann problems at the cell inter-
faces at xi�1=2. The term AþDQn

i�1=2 represents the net updating contribution from the rightward moving waves
into grid cell Ci from the left interface, and A�DQn

iþ1=2 represents the net updating contribution from the left-
ward moving waves into cell Ci from the right interface. Calculating A�DQn

i�1=2 from the waves in the Riemann
solutions is straightforward and described briefly in the next section.

The wave propagation method (6) can be extended to formal second order accuracy by including correction
terms:
Qnþ1
i ¼ Qn

i �
Dt
Dx
ðAþDQn

i�1=2 þA�DQn
iþ1=2Þ �

Dt
Dx
ðeF n

iþ1=2 � eF n
i�1=2Þ: ð7Þ
Like the fluctuations A�DQn
i�1=2, the second order correction terms eF n

i�1=2 can be determined entirely by the
waves in the Riemann problems at xi�1=2. The determination of the second order corrections will be discussed
in more detail in Section 3.1. In order to prevent spurious numerical oscillations near discontinuities or steep
gradients, the correction term eF n

i�1=2 is limited by the use of a limiter function that assesses local variation in
the solution. There are many standard limiter functions that ensure TVD stability of the solution (see [35] or
[27] for a discussion).

Extension to multiple dimensions is possible by solving one-dimensional normal Riemann problems, and
again including second order correction terms—which include approximations to cross derivatives in multiple
dimensions. As in one dimension, all of these second order terms can be determined by the waves in Riemann
solutions. In two dimensions, hyperbolic systems of the form
qt þ Aðq; x; yÞqx þ Bðq; x; yÞqy ¼ 0; ð8Þ
where q 2 Rm, Aðq; x; yÞ;Bðq; x; yÞ 2 Rm�m, are approximated by a wave propagation algorithm of the form
Qnþ1
ij ¼ Qn

ij �
Dt
Dx
ðAþDQn

i�1=2;j þA�DQn
iþ1=2;jÞ �

Dt
Dy
ðBþDQn

i;j�1=2 þ B�DQn
i;jþ1=2Þ

� Dt
Dx
ðeF n

iþ1=2;j � eF n
i�1=2;jÞ �

Dt
Dy
ðeGn

i;jþ1=2 � eGn
i;j�1=2Þ: ð9Þ
The terms A�DQn
i�1=2;j and eF n

i�1=2;j are determined by Riemann problems in the x-direction at the left and right
edges of the rectangular cell Cij, and similarly B�DQn

i;j�1=2 and eGn
i;j�1=2 are determined by Riemann problems in

the y-direction at the top and bottom of Cij. Again, the second order correction terms eF n
i�1=2;j and eGn

i;j�1=2 are
limited near shocks or gradients to prevent oscillations due to numerical dispersion. Because one-dimensional
Riemann solvers are used for the method (9), in this paper we will concentrate on the one-dimensional prob-
lem and algorithms. For more detail on the extension of the wave propagation algorithm to multiple dimen-
sions using one-dimensional Riemann solvers, see [27]. For additional detail on using the Riemann solver
presented in this paper in two dimensions see [14].
3. Standard Riemann solvers for wave propagation

The wave propagation algorithms introduced in the previous section require a Riemann solver to determine
the updating fluctuations A�DQn

i�1=2 and second-order correction term eF n
i�1=2 at a grid cell interface xi�1=2. The

Riemann solver is the primary topic of this paper. For more details on the wave propagation algorithm itself,
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we refer the reader to standard references such as [25,27]. Recall that a Riemann solver provides an exact or
approximate weak solution to the hyperbolic PDE given initial data that is piecewise constant with a single
jump discontinuity. We will look at the Riemann problem for the system (4) with initial data
qðx; tnÞ ¼
Qn

i�1 if x < xi�1=2;

Qn
i if x > xi�1=2:

�
ð10Þ
One type of approximate solver for (10), which we call a simple solver (following [4]), approximates the true
Riemann solution as a piecewise constant solution with Mw propagating jump discontinuities, or waves,
Wp

i�1=2 2 Rm, for p ¼ 1; . . . ;Mw. Each wave Wp
i�1=2 propagates with a constant wave-speed sp

i�1=2. Note that
the initial data must satisfy
Qn
i � Qn

i�1 ¼
XMw

p¼1

Wp
i�1=2: ð11Þ
Eq. (11) suggests a means for determining the approximate Riemann solution—simply use a decomposition of
the initial data into a set of vectors rp

i�1=2 2 Rm, for p ¼ 1; . . . ;Mw:
Qi � Qi�1 ¼
XMw

p¼1

Wp
i�1=2 ¼

XMw

p¼1

ap
i�1=2rp

i�1=2; ð12aÞ
where Wp
i�1=2 ¼ ap

i�1=2rp
i�1=2. (To ease notation we will now suppress the time superscript, n, it being understood

that all quantities are determined explicitly at time tn.) Given the waves Wp
i�1=2 and wave-speeds sp

i�1=2, the fluc-
tuations are defined by
A�DQi�1=2 ¼
X

fp:sp
i�1=2

<0g

sp
i�1=2W

p
i�1=2; ð12bÞ

AþDQi�1=2 ¼
X

fp:sp
i�1=2

>0g
sp

i�1=2W
p
i�1=2: ð12cÞ
The vector rp
i�1=2 and associated wave-speed sp

i�1=2 are preselected based on the characteristic structure of the
PDE, and are typically functions of the initial Riemann data. Typically one chooses Mw ¼ m, and linearly
independent vectors rp

i�1=2, for p ¼ 1; . . . ;m, so that the coefficients ap
i�1=2 2 R in (12a) are uniquely determined.

However, this is not strictly necessary. In fact, with some approximate solvers providing more than m waves in
the case of a transonic rarefaction is necessary to prevent convergence to entropy violating expansion shocks—
non-physical weak solutions. See [27] for details of this problem with some common Riemann solvers and
some appropriate entropy fixes. A common choice for the pair frp

i�1=2; s
p
i�1=2g is the pth eigenpair of a local

linear approximation to Aðq; xÞ at xi�1=2, since then the approximate Riemann solution corresponds to the true
solution of the linearized problem.

A widely used linearization for a conservation law of the form (5) is the Roe solver [34], where frp
i�1=2; s

p
i�1=2g

is chosen to be the pth eigenpair fr̂p
i�1=2; k̂

p
i�1=2g of the Roe Jacobian matrix bAi�1=2 ¼ AðbQi�1=2Þ, where bQi�1=2 is

the Roe average of Qi and Qi�1. (We will use a hat to denote Roe averaged quantities throughout this paper.)
Given two states, Qi and Qi�1, by definition the Roe averaged Jacobian satisfies the following property:
bAi�1=2ðQi � Qi�1Þ ¼ f ðQiÞ � f ðQi�1Þ: ð13Þ
With the Roe solver if the true Riemann solution corresponds to a single shock-wave, i.e. the initial Riemann
data lies on a single Hugoniot-locus (see e.g. [27]), then the Roe solver produces the exact solution. This fol-
lows from (13) and the Rankine–Hugoniot conditions for a shock wave moving with speed s:
f ðQiÞ � f ðQi�1Þ ¼ sðQi � Qi�1Þ; ð14Þ

which together imply that Qi � Qi�1 is an eigenvector of bAi�1=2 with eigenvalue s. The decomposition (12a) thus
provides the exact solution.

A consistent alternative approach to (12) for a conservation law, is to perform a decomposition of the
flux
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f ðQiÞ � f ðQi�1Þ ¼
XMw

p¼1

Zp
i�1=2 ¼

XMw

p¼1

bp
i�1=2rp

i�1=2: ð15aÞ
The waves Zp
i�1=2 ¼ bp

i�1=2rp
i�1=2, for p ¼ 1; . . . ;Mw, now represent propagating jumps in the flux, and the fluc-

tuations are therefore defined by
A�DQi�1=2 ¼
X

fp:sp
i�1=2

<0g
Zp

i�1=2; ð15bÞ

AþDQi�1=2 ¼
X

fp:sp
i�1=2

>0g
Zp

i�1=2: ð15cÞ
This has been referred to as the f-wave method [3], since the waves carry units of flux. Typically the pairs
frp

i�1=2; s
p
i�1=2g are the same that would be used in (12). (In the event that sp

i�1=2 ¼ 0 and jjZp
i�1=2jj > 0 for some

p, it is necessary for numerical conservation to include the stationary wave Zp
i�1=2 into the fluctuations, such as

including half of it in each of (15b) and (15c). However, for many choices of frp
i�1=2; s

p
i�1=2g, sp

i�1=2 ¼ 0 implies

that jjZp
i�1=2jj ¼ 0. See [3].) The consistency of (15) is not surprising if one considers a linear problem with

f ðqÞ ¼ Aq, where the true Riemann solution has jump discontinuities proportional to the eigenvectors of
the Jacobian A propagating at the speeds of the eigenvalues, and the jumps in the flux are therefore propor-
tional to the jumps in the solution but multiplied by the corresponding eigenvalues. Moreover, for the non-
linear problem the Rankine–Hugoniot jump condition (14) implies that across a discontinuity the jump in
flux is equal to the jump in the solution multiplied by the speed of the propagating discontinuity.

If Roe eigenpairs are used, the decompositions in (12) and (15) produce identical fluctuations since (12a),
(13) and (15a) imply that bp

i�1=2 ¼ sp
i�1=2a

p
i�1=2 for p ¼ 1; . . . ;m.

3.1. Second-order correction terms

The second order correction term eF n
i�1=2 improves the order of accuracy of the wave propagation algorithm,

at least where the solution is smooth. It can be determined entirely by the waves in the Riemann problem at
xi�1=2. If a solver of the form (12) is used, the correction term is given by
eF i�1=2 ¼
1

2

XMw

p¼1

jsp
i�1=2j 1� Dt

Dx
jsp

i�1=2j
� �fW p

i�1=2; ð16Þ
where fW p
i�1=2 is a limited version of the wave Wp

i�1=2 using a TVD limiter. If a solver of the form (15) is used,
the correction term is given by
eF i�1=2 ¼
1

2

XMw

p¼1

sgnðsp
i�1=2Þ 1� Dt

Dx
jsp

i�1=2j
� �eZ p

i�1=2; ð17Þ
where eZ p
i�1=2 is a limited version of the wave Zp

i�1=2, again using a TVD limiter. See [27] for details.

3.2. Properties and inadequacies of standard solvers

The difference between a standard solver based on a decomposition of the solution (12) and one based on a
flux decomposition (15) may seem mostly aesthetic since both provide consistent definitions for the fluctuations
A�DQi�1=2 by approximating the true nonlinear Riemann solution. However, there are various motivations and
drawbacks to each. First, one caveat to using (12) for a conservation law, in which AðqÞ in (4) corresponds to the
flux Jacobian f 0ðqÞ, is that numerical conservation is guaranteed only if the fluctuations satisfy
f ðQiÞ � f ðQi�1Þ ¼ AþDQi�1=2 þA�DQi�1=2: ð18Þ
The requirement (18) is satisfied if (12) is based on a Roe solver. However, using Roe eigenpairs has some
drawbacks such as failing to preserve depth non-negativity in the case of the shallow water equations, and
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requiring entropy fixes to prevent non-physical solutions (see [34,27] or [14]). A more general choice of pairs
frp

i�1=2; s
p
i�1=2g for (12) will not guarantee a conservative numerical update. On the other hand, an f-wave ap-

proach defined by (15) always produces a conservative numerical method since (18) is automatically satisfied,
as long as sp

i�1=2 6¼ 0 for p ¼ 1; . . . ;Mw. (An easy fix is available if sp
i�1=2 ¼ 0 and jjZp

i�1=2jj > 0 for some p, as
mentioned in the last section.)

Unfortunately, for shallow water applications there is an inherent weakness to the f-wave approach; since
the depth is not included in the decomposition there is no clear way to prevent depth non-negativity in the
Riemann solution—an important property for shallow water applications with inundation. We will refer to
solvers that maintain depth non-negativity in the approximate solution as depth positive semidefinite. Approx-
imate Riemann solvers are generally not depth positive semidefinite. Exceptions include some of the HLL-type
solvers [21], such as the HLLE solver [9,10]. These solvers are not based on a characteristic eigendecomposi-
tion such as (12a) or (15a) with eigenvectors rp

i�1=2. The HLL-type solvers are not well-balanced, and require a
rather involved modification in order to properly preserve steady states for the shallow water equations; see
[13,29] for such a procedure. However, the solver described in the final sections of this paper incorporates the
depth positive semidefinite feature of the HLLE solver, while based on a simple eigendecomposition
framework.

Another weakness of simple approximate solvers with m discontinuities is that they inaccurately represent a
true Riemann solution if it has large rarefaction waves. The most important such case is a Riemann solution
with a transonic rarefaction that spreads in both directions. It is well known that approximating such a wave
with a single discontinuity can produce non-physical entropy violating numerical solutions. One possible fix to
this problem is to provide two discontinuities, one moving in each direction, to approximate the single tran-
sonic rarefaction. Of course, then a decomposition of the form (12a) or (15a) is not uniquely determined, and
some scheme must be devised to determine the coefficients ap

i�1=2 or bp
i�1=2, for p ¼ 1; . . . ; ðmþ 1Þ, in those

under-determined systems. See [27] for some examples of such schemes.

3.3. Solvers with more than m waves

Another possibility for providing more than m waves is to use a decomposition of an augmented vector
with Mw components (Mw > m) into Mw linearly independent vectors rp

i�1=2 2 RMw , providing unique coeffi-
cients. For instance, in [30] LeVeque and Pelanti explore decompositions of the form
Qi � Qi�1

f ðQiÞ � f ðQi�1Þ

� �
¼
X2m

p¼1

ap
i�1=2

rp
i�1=2

zp
i�1=2

" #
; ð19Þ
where rp
i�1=2 2 Rm, zp

i�1=2 2 Rm and again each wave propagates at an associated speed sp
i�1=2, for p ¼ 1; . . . ; 2m.

Although this decomposition contains 2m waves with 2m components, only m components of those 2m waves
are needed to define the fluctuations. Since both the solution and the flux are decomposed in (19), the
fluctuations could be defined similarly to the fluctuations in (12) with ap

i�1=2rp
i�1=2 ¼Wp

i�1=2, or similarly to
the fluctuations in (15) with ap

i�1=2zp
i�1=2 ¼ Zp

i�1=2. If one defines the vectors zp
i�1=2 by zp

i�1=2 ¼ sp
i�1=2rp

i�1=2, these
two alternatives yield identical conservative fluctuations. It should be noted that the vector ðQi � Qi�1;
f ðQiÞ � f ðQi�1ÞÞ

T 2 R2m actually lies in the m-dimensional subspace spanned by ðr̂n
i�1=2; k̂

p
i�1=2r̂p

i�1=2Þ
T 2 R2m,

where fr̂p
i�1=2; k̂

p
i�1=2g, p ¼ 1; . . . ;m, are the m eigenpairs of a Roe averaged Jacobian bAi�1=2. This follows from

(13). Therefore the standard method (12), the f-wave method (15) and the augmented decomposition (19) are
all equivalent when Roe eigenpairs are used. For a more complete discussion of (19) using other vectors, and
its relation to relaxation to relaxation solvers, see [30].
4. Augmented Riemann solvers for the shallow water equations

In this section we introduce a novel approximate solver for the shallow water equations, for both the homo-
geneous case and more generally in the presence of a source term. The motivation for this solver is that it
simultaneously possesses desirable qualities of the Roe solver [34], HLLE-type solvers [9,10] and the f-wave
approach [3] without the inherit weaknesses of each. For instance, like the HLLE solver, it is depth positive
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semidefinite—an important property for accurate inundation modeling. Additionally, like the Roe solver, it
provides the exact solution in the event of a single-shock Riemann problem—a desirable property for
shock-capturing schemes. Further, by providing more than two waves, the solver has a natural entropy fix
and provides a better approximation for problems with large rarefactions. The solver is well-balanced in that
it preserves a large class of steady states, even non-stationary steady states with non-zero fluid velocity. We
will show how this well-balanced inclusion of the source term is accomplished in a simple solver framework,
where the Riemann solver is entirely defined by a set of linearly independent vectors and associated wave
speeds, so that a simple decomposition of initial Riemann data uniquely determines the approximate solution.

4.1. An augmented solver for the homogeneous shallow water equations

We first describe the approximate Riemann solver for the homogeneous shallow water equations
ht þ ðhuÞx ¼ 0; ð20aÞ

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ 0: ð20bÞ
In Section 4.2 we describe the full solver for the non-homogeneous system, which reduces to the solver de-
scribed in this section when there is no source term. For the homogeneous system, the solver is related to
(19), in that we use a decomposition of the flux and solution into a set of vectors. However, note that the
decomposition (19) for the shallow water equations would decompose two identical components since both
the second component of the solution q and the first component of the flux f ðqÞ are equal the momentum
hu. Instead we consider a decomposition of the form
H i � H i�1

HU i � HU i�1

uðQiÞ � uðQi�1Þ

264
375 ¼X3

p¼1

ap
i�1=2wp

i�1=2; ð21Þ
where Qi ¼ ðH i;HU iÞT is the numerical solution for q ¼ ðh; huÞT in Ci, uðqÞ ¼ ðhu2 þ 1
2
gh2Þ is the momentum

flux, and wp
i�1=2 2 R3, for p ¼ 1; . . . ; 3, is a chosen set of independent vectors. Note that the first two of the

three components in (21) represent a decomposition of the solution Qi � Qi�1 2 R2, and the last two of the
three components represent a decomposition of the flux f ðQiÞ � f ðQi�1Þ 2 R2. In order to ensure conservation,
regardless of the form of wp

i�1=2, we use the last two of three components of the decomposition (21) to define
the updating fluctuations. That is, we define flux waves Zp

i�1=2 2 R2, for p ¼ 1; . . . ; 3, by
Zp
i�1=2 ¼ ½ 02�1 I2�2 �ap

i�1=2wp
i�1=2; ð22Þ
where I2�2 is the two by two identity, and 02�1 the two by one zeros matrix. (The matrix multiplication in (22)
simply selects the last two components of ap

i�1=2wp
i�1=2 2 R3, for each p ¼ 1; . . . ; 3.) We then define the fluctu-

ations by
A�DQi�1=2 ¼
X

fp:sp
i�1=2

<0g
Zp

i�1=2; ð23aÞ

AþDQi�1=2 ¼
X

fp:sp
i�1=2

>0g

Zp
i�1=2; ð23bÞ
exactly as in (15). This implies that the updating fluctuations are ultimately determined by a flux decomposi-
tion similar to the f-wave approach (15). However, we have decomposed the flux uniquely into three waves
rather than two. As described in Section 5, this allows a more accurate approximation to Riemann problems
with a large rarefaction and a natural entropy fix for transonic rarefactions. Moreover, as will be shown,
including Hi � H i�1 in the decomposition makes it possible to create updating fluctuations that correspond
to using a depth positive semidefinite Riemann solver, even though our fluctuations are based on flux waves.
Additionally, when we include source terms, it will be shown that including both the depth and fluxes in our
decomposition will be necessary to precisely preserve steady states.
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Of course, we must choose vectors wp
i�1=2 2 R3 and associated wave speeds sp

i�1=2, for p ¼ 1; . . . ; 3: The first
and third pairs fw1;3

i�1=2; s
1;3
i�1=2g will be related to the original two fields of the shallow water equations. (We use

p ¼ 1 and p ¼ 3 for these pairs since, as we will see, s1
i�1=2 < s2

i�1=2 < s3
i�1=2.) The Jacobian of the shallow water

system (20) has eigenpairs frðqÞ; kðqÞg given by
fr�ðqÞ; k�ðqÞg ¼ fð1; u�
ffiffiffiffiffi
gh

p
ÞT ; u�

ffiffiffiffiffi
gh

p
g: ð24Þ
We choose
fw1
i�1=2; s

1
i�1=2g ¼ ð1;�s�i�1=2; ð�s�i�1=2Þ

2ÞT ;�s�i�1=2

n o
; ð25aÞ

fw3
i�1=2; s

3
i�1=2g ¼ ð1;�sþi�1=2; ð�sþi�1=2Þ

2ÞT ;�sþi�1=2

n o
; ð25bÞ
where �s�i�1=2 and �sþi�1=2 are defined by
�s�i�1=2 ¼ minðk�ðQn
i�1Þ; k̂�i�1=2Þ; ð26aÞ

�sþi�1=2 ¼ maxðkþðQn
i Þ; k̂þi�1=2Þ; ð26bÞ
where k̂�i�1=2 are the eigenvalues of the Roe averaged Jacobian bAi�1=2. (For the definition and derivation of the
Roe averages for the shallow water equations see [34] or [27].) We will refer to the speeds (26) as the Einfeldt

speeds, since they were suggested by Einfeldt for use with the HLLE solver ([21,9,10]) in order to preserve
depth non-negativity. (We use a check� in the notation of quantities related to the HLLE solver, and a hat
for Roe averages.)

The additional pair fw2
i�1=2; s

2
i�1=2g needed for (21) can be chosen in various ways. We will refer to the result-

ing second wave Z2
i�1=2 as the corrector wave, since it corrects for inaccurate, non-conservative or entropy vio-

lating approximate Riemann solutions with only two waves. For now we will let
fw2
i�1=2; s

2
i�1=2g ¼ ð0; 0; 1ÞT ; 1

2
ð�s�i�1=2 þ �sþi�1=2Þ

� �
: ð27Þ
In Section 5 we will describe how some simple assessments of the exact Riemann structure can optionally be
used to better choose fw2

i�1=2; s
2
i�1=2g and improve the accuracy of the approximate solution. By choosing (27),

the Riemann solver corresponds to the Roe solver for shock problems lacking a rarefaction, in which the Ein-
feldt speeds (26) correspond to the Roe eigenvalues. This is because the vector ðQi� Qi�1;uðQiÞ�
uðQi�1ÞÞ

T 2 R3 lies in the 2-dimensional subspace spanned by the vectors w1
i�1=2 and w3

i�1=2 in (25) (following
from (13)). Therefore, a2

i�1=2 ¼ 0, there is no second wave, and the solution and flux are decomposed into Roe
eigenvectors. More generally, for Riemann problems without a significant or strong rarefaction, the Einfeldt
speeds correspond to, or are at least close to the Roe eigenvalues. (This follows from conservation of the Roe
solver—see [14].) It therefore follows that the second wave Z2

i�1=2 will be small in magnitude for such problems,
even when one of the Einfeldt speeds is not exactly the corresponding Roe eigenvalue. An optional correction
for problems with a large rarefaction will be described in Section 5.

When using (27), in order to guarantee conservation for Riemann problems in which s2
i�1=2 ¼ 0, the wave

Z2
i�1=2 should be divided into AþDQi�1=2 and A�DQi�1=2. This is because, unlike with p ¼ 1 and p ¼ 3, with

p ¼ 2, s2
i�1=2 ¼ 0 does not imply that Z2

i�1=2 ¼ 0. This is not unique to this Riemann solver, but is required
of any approximate Riemann solver based on a flux decomposition, where the flux is decomposed into a sta-
tionary vector (see [3]). In exact Riemann solutions to conservation laws the Rankine–Hugoniot condition
implies that a jump in the flux should not occur across a stationary discontinuity, and further for the homo-
geneous shallow water equations a discontinuity in ðh; hu;uÞT is always proportional to ð1; s; s2ÞT , where s is
the speed of the discontinuity. In the next section we show how a jump in the flux across a stationary discon-
tinuity acts as a concentrated source term.

The choice (27) implies that the mass (depth) update defined by (21)–(23) is equivalent to the HLLE solver.
This is detailed in [14], but can be seen by considering the following argument. The HLLE solver uses the
speeds (26) to define two propagating discontinuities, and then a middle state between the two discontinuities
is determined such that numerical conservation is maintained. The first component of the HLLE middle state,
here denoted �H �i�1=2, is given by
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�H �i�1=2 ¼
HU i�1 � HU i þ �sþi�1=2H i � �s�i�1=2Hi�1

�sþi�1=2 � �s�i�1=2

: ð28Þ
Note that if (27) is used, the first component of Z2
i�1=2 must be zero. Therefore, the mass is updated by only

two discontinuities, the first components of Z1
i�1=2 and Z3

i�1=2, both propagating at the same speeds (26) used
by the HLLE solver. Since the HLLE solver is depth positive semidefinite, �H �i�1=2 P 0, the updating fluctua-
tions (23) when using (27) correspond to a depth positive semidefinite Riemann solver.

One advantage to the solver presented here over the standard HLLE solver is that we will be able to include
the contribution of a source term with the introduction of another wave while maintaining steady states pre-
cisely, as well as maintaining the depth positive semidefinite feature. This is described in the following sections
where we generalize the solver to include problems with a source term.

4.2. Including the source term

Over variable bathymetry the shallow water equations (1) possess a source term that contributes to momen-
tum. Numerical treatment of this source term is important for applications such as tsunami modeling since the
source term and flux divergence must balance properly in the numerical method in order to accurately model
the small perturbations that represent the tsunami. This is not necessarily an issue of order of accuracy of the
numerical method—a high-order method can fail at preserving this balance on practical grid resolutions. It is
necessary to preserve the ocean at rest steady state even on very coarse grid resolutions. This is especially true
since we use our wave-propagation method together with adaptive mesh refinement, which puts regions at
steady state on extremely coarse grid resolutions for efficiency (see [15,16]).

The standard approach of fractional stepping to include the source term fails at preserving the required bal-
ance, as is well known (e.g. [3,4,14,26]). Instead, we include the effect of the source term by introducing a
fourth wave to our solver, and including the bottom elevation bðxÞ into our decomposition. That is, we gen-
eralize (21) to include decompositions of the form
H i � H i�1

HU i � HU i�1

uðQiÞ � uðQi�1Þ
Bi � Bi�1

26664
37775 ¼X3

p¼0

ap
i�1=2wp

i�1=2; ð29Þ
where Bi and Bi�1 are cell-averaged approximations to the bottom elevation in Ci and Ci�1. Now we must
choose wp

i�1=2 2 R4, and associated wave speeds sp
i�1=2 for p ¼ 0; . . . ; 3. (We index the new wave with p ¼ 0

to indicate that, as we will see, this wave is stationary, s0
i�1=2 ¼ 0.) As with the three-wave solver for the homo-

geneous case, we use the second and third components of ap
i�1=2wp

i�1=2 2 R4 to define Zp
i�1=2 2 R2. That is, for

each p, we let
Zp
i�1=2 ¼ 02�1 I2�2 02�1½ �ap

i�1=2wp
i�1=2 ð30Þ
and again define the fluctuations by (23), noting that now there are four waves Zp
i�1=2, p ¼ 0; . . . ; 3, and the

wave corresponding to p ¼ 0 is not included in the fluctuations since s0
i�1=2 ¼ 0. The effect of the source term

is actually included in this construction of the fluctuations by a proper choice of w0
i�1=2, as described below and

in Section 4.2.1.

One interpretation of the decomposition (29) is that it is a simple wave based solver of the form (12) for a
nonlinear homogeneous hyperbolic system of the form (4), with m ¼ 4. The shallow water Eqs. (1) are equiv-
alent to such a system, which we will write as
~qt þ W ð~qÞ~qx ¼ 0; ð31Þ
where
~q ¼ ðh; hu; u; bÞT ð32Þ



3098 D.L. George / Journal of Computational Physics 227 (2008) 3089–3113
is an augmented state variable and
W ð~qÞ ¼

0 1 0 0

�u2 þ gh 2u 0 gh

0 �u2 þ gh 2u 2ugh

0 0 0 0

26664
37775: ð33Þ
The eigenpairs of the matrix (33) are
fr0ð~qÞ; k0ð~qÞg ¼ gh

k1ð~qÞk3ð~qÞ
; 0;�gh; 1

 !T

; 0

( )
; ð34aÞ

r1ð~qÞ; k1ð~qÞ
	 


¼ ð1; k1ð~qÞ; ðk1ð~qÞÞ2; 0ÞT ; u�
ffiffiffiffiffi
gh

pn o
; ð34bÞ

fr2ð~qÞ; k2ð~qÞg ¼ ð0; 0; 1; 0ÞT ; 2u
	 


; ð34cÞ

fr3ð~qÞ; k3ð~qÞg ¼ ð1; k3ð~qÞ; ðk3ð~qÞÞ2; 0ÞT ; uþ
ffiffiffiffiffi
gh

pn o
: ð34dÞ
Note that the form of rpðð~qÞÞ resembles the vectors wp
i�1=2, for p ¼ 1; . . . ; 3, used in the homogeneous solver

(21) with an additional fourth component equal to zero. Therefore, we continue to use these three vectors,
adding a fourth component equal to zero, and keep the same wave speeds, which gives pairs
fw1
i�1=2; s

1
i�1=2g ¼ fð1;�s�i�1=2; ð�s�i�1=2Þ

2
; 0ÞT ;�s�i�1=2g; ð35aÞ

fw2
i�1=2; s

2
i�1=2g ¼ fð0; 0; 1; 0Þ

T
;
1

2
ð�s�i�1=2 þ �sþi�1=2Þg; ð35bÞ

fw3
i�1=2; s

3
i�1=2g ¼ fð1;�sþi�1=2; ð�sþi�1=2Þ

2
; 0ÞT ;�sþi�1=2g: ð35cÞ
We will consider fw0
i�1=2; s

0
i�1=2g, and how it affects the solution, below in Section 4.2.1.

The system (31) is over-determined in that it contains a redundant equation for u, since u is only a
function of h and hu. Therefore, the physical relevance of the form of r2ð~qÞ and k2ð~qÞ in (34) is not clear
since this field can carry variation only in the third component, the momentum flux u, which is a function
only of h and hu. Including a wave representing this field in our approximate Riemann solution allows an
extra degree of freedom for u, which is warranted since the change in h, hu and u across a single discon-
tinuity is typically inconsistent with the true smooth rarefaction wave in the exact Riemann solution. In
the future we wish to explore connections between using this additional wave and relaxation solvers, such
as described in [30,22]. We return to the corrector wave w2

i�1=2 in Section 5. In the next section we discuss
the stationary wave w0

i�1=2.

4.2.1. The steady state wave

By incorporating the bottom surface bðxÞ as an additional solution variable in ~q, the shallow water equa-
tions have been written as a homogeneous system (31) with no source term. This introduces a new linearly
degenerate field with an identically zero eigenvalue k0ð~qÞ � 0. Variation in bðxÞ occurs entirely with respect
to this field. In fact, this field carries the variation of all the components of ~q for a smooth steady state, since
a non-trivial steady state solution to (31) satisfies
W ð~qÞ~qx ¼ 0; ð36Þ

which implies that ~qx is proportional to r0ð~qÞ. That is, smooth steady state solutions ~qðx; 	Þ are integral curves
of r0ð~qÞ in R4, parameterized by x.

For the approximate solver defined by (29) the pair fw0
i�1=2; s

0
i�1=2g is chosen to be an approximation to r0ð~qÞ

and k0ðqÞ based on the local solution. Since s0
i�1=2 ¼ k0ð~qÞ ¼ 0, the resulting stationary wave in the approxi-

mate Riemann solution is a jump discontinuity remaining at the cell interface, which contributes the effect
of the source term. By defining the vector w0

i�1=2 in the right way using special averages of the two states Qi

and Qi�1, we believe that the solver preserves a larger class of steady states than has been accomplished before
in a simple solver framework. This is described below. Some other approximate solvers that have a stationary
discontinuity at the cell interface due to a source term can be found in [3,11].



D.L. George / Journal of Computational Physics 227 (2008) 3089–3113 3099
For any two states, we define two different averages for kþðqÞk�ðqÞ ¼ u2 � gh, the product of the shallow
water eigenvalues. We write these averages as functions of Qi and Qi�1, and denote them with a bar and tilde,
kþk�ðQi�1;QiÞ ¼
Ui�1 þ Ui

2

� �2

� g
H i�1 þ H i

2

� �
; ð37Þ
and
gkþk�ðQi�1;QiÞ ¼ maxð0;UiU i�1Þ � g
Hi�1 þ Hi

2

� �
: ð38Þ
We also define two average depths, the simple arithmetic average
HðQi�1;QiÞ ¼
H i�1 þ H i

2

� �
; ð39Þ
and
eH ðQi�1;QiÞ ¼ HðQi�1;QiÞ
gkþk�ðQi�1;QiÞ

kþk�ðQi�1;QiÞ
: ð40Þ
We then let
w0
i�1=2 ¼

gHðQi�1;QiÞ
kþk�ðQi�1;QiÞ

0

�g eH ðQi�1;QiÞ
1

266664
377775: ð41Þ
Note that (41) resembles r0ð~qÞ, evaluated with special averages of the left and right states. The form of the
averages used in the vector (41) is due to the following fact, which we write as a theorem:

Theorem 1. Suppose that a smooth steady state solution to the shallow water equations exists between two points,

xl and xr, with bðxlÞ 6¼ bðxrÞ. If the vector ~qðx; tÞ 2 R4 is differenced between xl and xr, then the difference satisfies
~qðxr; tÞ � ~qðxl; tÞ ¼ ðbðxrÞ � bðxlÞÞ

gHðqðxl;tÞ;qðxr ;tÞÞ
kþk�ðqðxl;tÞ;qðxr ;tÞÞ

0

�g eH ðqðxl; tÞ; qðxr; tÞÞ
1

266664
377775: ð42Þ
Proving (42) involves well known properties of steady state solutions, and is left to Appendix A. Theorem 1
implies that if the numerical data, eQi ¼ ðH i;HU i;uðQiÞ;BiÞT and eQi�1 ¼ ðHi�1;HU i�1;uðQi�1Þ;Bi�1ÞT corre-
spond to evaluating a smooth steady state at two points surrounding variable bathymetry, then the decompo-
sition (29) will have only one non-zero wave—the steady state wave—since
eQi � eQi�1 ¼ a0
i�1=2w0

i�1=2 ¼ ðBi � Bi�1Þw0
i�1=2: ð43Þ
Since the steady state wave is stationary the discrete steady state will be exactly maintained as a jump discon-
tinuity at the cell interface xi�1=2. Theorem 1 or Eq. (43) imply that if we choose any two points, say eQi 2 R4

and eQi�1 2 R4, lying on an integral curve of r0ð~qÞ 2 R4, those points will be connected by the vector
ðBi � Bi�1Þw0

i�1=2. We will refer to such a pair of states, eQi and eQi�1, as steady state data.
Additionally, it is easy to show that the motionless steady state, ðhþ bÞx � 0, hu � 0, satisfies (42)

regardless of the smoothness of the depth h and the underlying bathymetry b, and therefore numerical data
H i þ Bi ¼ Hi�1 þ Bi�1, Ui ¼ U i�1 ¼ 0, satisfies (43). These properties obviously allow convergence to smooth
steady states, but more importantly allow perfect maintenance of discrete steady states, even on coarse
grids.
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For Riemann data not satisfying (43), the decomposition (29) will generate propagating waves. The waves
Zp

i�1=2 for p 6¼ 0, represent deviations to the steady state which propagate away from the cell interface, and the
two states remaining on either side of the cell interface are approximately steady state data. For certain excep-
tional non-steady state Riemann problems, the definitions in (41) might become problematic if either gkþk� or
kþk� approach zero. This is related to the loss of hyperbolicity of (31), which occurs when one of the eigen-
values passes through zero. We wish to explore this topic further in the future. Numerically this problem can
be circumvented by imposing bounds on ðw0

i�1=2Þ
1 and ðw0

i�1=2Þ
3. We address such bounds in the following sec-

tions when we discuss consistency and preserving depth non-negativity in the presence of a source term.

4.2.2. Consistency of the steady state wave and the source term

A discontinuity proportional to (41) at the cell interface acts as a source of momentum, as can be seen by
considering the updating fluctuations, defined by (23). Note that the stationary wave Z0

i�1=2 is not included in
A�DQi�1=2 since this wave does not move into either adjacent grid cell. Therefore, the decomposition (29)
defines exactly the same fluctuations as would be obtained by first subtracting the stationary wave from the
Riemann data:
H i � Hi�1

HU i � HU i�1

uðQiÞ � uðQi�1Þ
Bi � Bi�1

26664
37775� a0

i�1=2w0
i�1=2 ¼

X3

p¼1

ap
i�1=2wp

i�1=2: ð44Þ
Since only w0
i�1=2 has a non-zero fourth component, we know that a0

i�1=2 ¼ ðBi � Bi�1Þ. Therefore, Eq. (44) cor-
responds to the following decomposition of the momentum flux
uðQiÞ � uðQi�1Þ � ð�g eH ðQi�1;QiÞðBi � Bi�1ÞÞ ¼
X3

p¼1

ðap
i�1=2wp

i�1=2Þ
3
: ð45Þ
Eq. (45) represents subtracting an approximation to the source term (integrated over a cell length) from the
momentum flux. This is exactly what is advocated in [3]. However, in [3], it is not determined what the best
form of the source term approximation should be given the initial Riemann data (i.e. what average of the ini-
tial depths Hi and H i�1 should be used in �ghbx). By using �g eH ðQi�1;QiÞ to approximate �gh, we are able to
precisely preserve smooth steady states over variable bathymetry. That is,
�g eH ðqðxl; tÞ; qðxr; tÞÞðbðxrÞ � bðxlÞÞ ¼ �
Z xr

xl

ghbx dx ð46Þ
is exactly satisfied for such solutions, as long as bðxrÞ � bðxlÞ 6¼ 0 (see Appendix A or [14]).
For problems that are far from a steady state it is reasonable to impose a bound on eH ðQi�1;QiÞ for con-

sistency and stability. Since it is an approximation to the depth, a suitable set of bounds might be
minðHi;H i�1Þ 6 eH ðQi�1;QiÞ 6 maxðHi;H i�1Þ: ð47Þ

One may choose other bounds based on the initial Riemann data or the approximate solution as well. For
Riemann problems that are a discretization of smooth steady state data, it is easy (at least for monotonically
varying bathymetry) to show that (47) is automatically satisfied (see [14]). In our simulations we impose (47).
4.2.3. Preserving depth non-negativity with a source term

When variable bathymetry is introduced into the Riemann problem a stationary discontinuity in depth is
introduced into the Riemann solution at the cell interface, due to the first component of w0

i�1=2. The net sum of
the mass to both sides of this interface remains positive, due to mass conservation and the depth positive semi-
definite feature for the homogeneous problem discussed at the end of Section 4.1. However, it is possible that
the jump discontinuity produces a positive depth to one side of the interface and a negative depth to the other.
This does not occur for steady state problems (see [14]), and it can be prevented for other problems by impos-
ing bounds on the jump in depth h at this interface, or equivalently, bounding the first component of w0

i�1=2. It
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can be shown (see [14]) that for subcritical flow the following bounds prevent negativity of the depth in the
approximate solution
ð�sþi�1=2 � �s�i�1=2Þ
�s�i�1=2

�H �i�1=2

ðBi � Bi�1Þ
6 ðw0

i�1=2Þ
1
6 �1 if Bi � Bi�1 > 0; ð48Þ

ð�sþi�1=2 � �s�i�1=2Þ
�sþi�1=2

�H �i�1=2

ðBi � Bi�1Þ
6 ðw0

i�1=2Þ
1
6 �1 if Bi � Bi�1 < 0; ð49Þ
where �H �i�1=2 is the single middle state depth of the HLLE solver given by (28).
For supercritical flow w0

i�1=2

� �1

is positive. Bounds on ðw0
i�1=2Þ

1 are not necessary due to mass conservation
and the net summation of waves moving in one direction, but a bound that preserves depth non-negativity
between each wave of the approximate solution can be easily derived, and might provide more accurate second
order correction terms. For transcritical Riemann problems where Bi 6¼ Bi�1, we set ðw0

i�1=2Þ
1 ¼ 0 to avoid pos-

sible instabilities. This type of Riemannn problem is physically dubious, but might arise numerically near
extrema in bðxÞ or near stationary shocks. See [14] for a discussion. We plan to study these issues for trans-
critical and supercritical Riemann problems further in the future.

4.3. Second order correction terms

4.3.1. Maintaining steady state preservation

The first order wave propagation method using the Riemann solver described above is well-balanced in the
sense that it perfectly preserves a sequence of solution data, f. . . ;Qi�1;Qi;Qiþ1; . . .g, if each adjacent pair
of states is steady state data (i.e. satisfies (43)). The correction terms eF i�1=2 must also preserve the same steady
state data (i.e. contribute no update). This is satisfied by using (17) for the correction terms: since the
steady state wave has sgnðs0

i�1=2Þ ¼ 0, it does not affect eF i�1=2, which for steady state data is given by
eF i�1=2 ¼
1

2
sgnðs0

i�1=2Þ 1� Dt
Dx
js0

i�1=2j
� �eZ 0

i�1=2 ¼ 0: ð50Þ
4.3.2. Limiting the correction terms to preserve positivity

Correction terms can also contribute to a spurious negative depth in the numerical solution, even if the first
order method (6) preserves the depth non-negativity of the solution. However, by using a simple additional
limiting strategy on the fluxes eF i�1=2, it is possible to prevent this effect. See [14] for details, and extension
to the two-dimensional problem.
5. Improving accuracy for shorelines and rarefactions

In this section we will be discussing some properties of exact Riemann solutions to the original homoge-
neous shallow water Eqs. (20), which contain two fields defined by (24). Recall that the first wave Z1

i�1=2 in
our approximate Riemann solution is related to fr1ð~qÞ; k1ð~qÞg of (34), which corresponds to the first-field
of the shallow water equations—defined by fr�ðqÞ; k�ðqÞg in (24). Regrettably, a possible source of confusion
is that the third wave Z3

i�1=2, related to fr3ð~qÞ; k3ð~qÞg of (34), corresponds to the second-field of the shallow
water equations, defined by frþðqÞ; kþðqÞg in (24). Below we show how Z2

i�1=2 can be used to complement
Z1

i�1=2 or Z3
i�1=2, providing a better approximation to the exact Riemann solution when it contains a large rar-

efaction. We will also modify and generalize the definition of the Einfeldt speeds (26), allowing a better
approximation to Riemann problems with an initial dry state, or near-dry state.

For the shallow water equations, the structure of the exact Riemann solution can be determined (i.e.

whether the wave in each field is a shock or rarefaction) by a single function evaluation using the initial Rie-
mann data (see Appendix B). Using this, we can classify the Riemann solution as belonging to one of four
types: type-one, both fields have a shock; type-two, one field has a shock and the other a rarefaction; type-
three, both fields have a rarefaction; or type-four, one state is initially dry, so only one wave is defined and
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is a rarefaction. Given the structure of the Riemann solution, in some situations we will determine or approx-
imate the depth of the middle state—the constant solution in the region between the propagating waves in the
exact Riemann solution. We will denote the middle state with a star: Q�i�1=2 (see Fig. 1).

5.1. Riemann problems with strong or transonic rarefactions

As explained in Section 4.1, we expect that Z2
i�1=2 will be small in magnitude for Riemann problems without

a significant or strong rarefaction in one field. For such problems, we use w2
i�1=2 ¼ ð0; 0; 1; 0Þ

T since this pro-
vides linearly independent vectors and results in a mass update that corresponds to the depth positive semi-
definite HLLE solver. For problems with a large rarefaction in one field, particularly a transonic
rarefaction, an alternative definition of the pair fw2

i�1=2; s
2
i�1=2g allows a more accurate approximate Riemann

solution. Fig. 1 depicts these types of Riemann problems. Given a large rarefaction in the first field, we might
use fw1

i�1=2; s
1
i�1=2g and fw2

i�1=2; s
2
i�1=2g to approximate fr1ð~qÞ; k1ð~qÞg at the left and right edges of the rarefaction

(see Fig. 1(a)), or given a large rarefaction in the second field, we might use fw2
i�1=2; s

2
i�1=2g and fw3

i�1=2; s
3
i�1=2g to

approximate fr3ð~qÞ; k3ð~qÞg at the left and right edges of the rarefaction (see Fig. 1(b)). Neither fw1
i�1=2; s

1
i�1=2g

or fw3
i�1=2; s

3
i�1=2g needs to be modified, since, given a rarefaction in the first or second field respectively, by

using the Einfeldt speeds, fw1
i�1=2; s

1
i�1=2g already corresponds to evaluating fr1ð~qÞ; k1ð~qÞg at the left state

Qi�1, and fw3
i�1=2; s

3
i�1=2g corresponds to evaluating fr3ð~qÞ; k3ð~qÞg at the right state Qi. Since r�ðqÞ is only a

function of its respective eigenvalue k�ðqÞ, to build fw2
i�1=2; s

2
i�1=2g we only need an approximation to

k�ðQ�i�1=2Þ in the event of a large 1-rarefaction or kþðQ�i�1=2Þ for a large 2-rarefaction. Using the Riemann
invariants of each characteristic field, it is easily shown that for a rarefaction in the first characteristic field,
Fig. 1.
shown
proble
proble
speeds
rarefac
k�ðQ�i�1=2Þ ¼ Ui�1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
gHi�1

p
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH �i�1=2

q
; ð51aÞ
and for a rarefaction in the second characteristic field,
kþðQ�i�1=2Þ ¼ Ui � 2
ffiffiffiffiffiffiffiffi
gH i

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH �i�1=2

q
: ð51bÞ
We therefore only require an approximation to the middle state depth H �i�1=2, which is easily accomplished (see
Appendix B). The speeds (51) also provide an indication of the strength of a given rarefaction, and whether it
is transonic.
Riemann problems with a large rarefaction in one characteristic family and a shock in the other. Characteristics of each family are
through the respective wave in that family. (a) A Riemann problem with a large transonic rarefaction in the first field. The Riemann
m is approximated by three discontinuities moving with speeds s1

i�1=2 ¼ �s�i�1=2, s2
i�1=2 � k�ðQ�i�1=2Þ and s3

i�1=2 ¼ �sþi�1=2. (b) A Riemann
m with a large transonic rarefaction in the second field. The Riemann problem is approximated by three discontinuities moving with
s1

i�1=2 ¼ �s�i�1=2, s2
i�1=2 � kþðQ�i�1=2Þ and s3

i�1=2 ¼ �sþi�1=2. In both cases two of the discontinuities are used to approximate the large
tion and the other approximates the shock.
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For any Riemann problem, we will define the following speeds as functions of H �i�1=2 (whether H �i�1=2 is
exact or only an approximation to the middle state depth):
Fig. 2.
interfa
wet–dr
k��i�1=2ðH �i�1=2Þ ¼ U i�1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
gH i�1

p
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH �i�1=2

q
; ð52aÞ

kþ�i�1=2ðH �i�1=2Þ ¼ U i � 2
ffiffiffiffiffiffiffiffi
gHi

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH �i�1=2

q
: ð52bÞ
We now let
fw2
i�1=2; s

2
i�1=2g ¼ 1; k��i�1=2ðH �i�1=2Þ; ðk

��
i�1=2ðH �i�1=2ÞÞ

2
; 0

� �T
; k��i�1=2ðH �i�1=2Þ

� �
; ð53aÞ
in the event of a strong 1-rarefaction, and
fw2
i�1=2; s

2
i�1=2g ¼ fð1; k

þ�
i�1=2ðH �i�1=2Þ; ðk

þ�
i�1=2ðH �i�1=2ÞÞ

2
; 0ÞT ; kþ�i�1=2ðH �i�1=2Þg; ð53bÞ
in the event of a strong 2-rarefaction.
In shallow regions H �i�1=2 might get small. As H �i�1=2 approaches zero the second pair fw2

i�1=2; s
2
i�1=2g should

again be defined by (35b), so that the Riemann solver is guaranteed to be depth positive semidefinite. In the
next section we cover dry-state Riemann problems.

5.2. Dry-state Riemann problems

For Riemann problems with an initial dry state to one side, the exact Riemann solution contains only a
single rarefaction connecting the wet to the dry state (see e.g. [37]). The evolving wet–dry interface is therefore
simply one edge of the rarefaction. The propagation speed of this interface can be exactly determined using the
Riemann invariants of the corresponding characteristic field. If the left state is initially dry, the rarefaction is in
the second characteristic field, and the wet–dry interface propagates at a speed
Ui � 2
ffiffiffiffiffiffiffiffi
gH i

p
: ð54aÞ
For an initially dry right state, the rarefaction is in the first characteristic field, and the wet–dry interface prop-
agates at a speed
Ui�1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
gHi�1

p
: ð54bÞ
t

a

t

b

The initial dry bed Riemann problems in the x–t plane. (a) The single rarefaction in the first field when Hi ¼ 0. The wet–dry
ce moves with speed s3

i�1=2 ¼ �sþi�1=2 ¼ k��i�1=2ð0Þ ¼ Ui�1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
gHi�1

p
. (b) The single rarefaction in the second field when H i�1 ¼ 0. The

y interface moves with speed s1
i�1=2 ¼ �s�i�1=2 ¼ kþ�i�1=2ð0Þ ¼ Ui � 2

ffiffiffiffiffiffiffiffi
gHi

p
.
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The speeds (54) correspond exactly to (52), since, in this case, the ‘‘middle state depth” H �i�1=2, corresponds to
the initial dry state and is therefore zero. See Fig. 2, which depicts this characteristic structure of the two dry
state Riemann problems.

Another interpretation of Riemann problems with an initial dry state is that waves in both fields still exist
but the wave in one field has zero strength. In this case, the wet–dry interface actually corresponds to an over-
lapping of the edge of a rarefaction in one field, and a zero strength shock in the other field moving at the same
speed. In fact, for Riemann problems in which both states are wet, but one is vanishingly small, the speed of
the edge of the rarefaction in one field approaches the speed of the wave in the other field. The dry state Rie-
mann solution might be thought of as the limit of this process. Therefore, for dry state problems we can still
always interpret fw1

i�1=2; s
1
i�1=2g as being an approximation to the first field of the shallow water equations and

fw3
i�1=2; s

3
i�1=2g an approximation to the second field, even though we want the pairs fw1

i�1=2; s
1
i�1=2g and

fw3
i�1=2; s

3
i�1=2g to be approximations to the eigenpair of the field containing the rarefaction, at the two edges

of the rarefaction. This can be accomplished by adjusting the Einfeldt speeds (26) in the case of an initial dry
state, and then continuing to use the same definition for fw1

i�1=2; s
1
i�1=2g and fw3

i�1=2; s
3
i�1=2g. That is, we define

the speeds
�s�i�1=2 ¼ minðk̂�i�1=2; k
�ðQi�1ÞÞ ¼ k�ðQi�1Þ ¼ Ui�1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
gHi�1

p
; ð55aÞ

�sþi�1=2 ¼ k��ðH �i�1=2Þ ¼ U i�1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
gH i�1

p
; ð55bÞ
when the right state is initially dry (Hi ¼ 0), and
�s�i�1=2 ¼ kþ�ðH �i�1=2Þ ¼ U i � 2
ffiffiffiffiffiffiffiffi
gHi

p
; ð56aÞ

�sþi�1=2 ¼ maxðk̂þi�1=2; k
þðQ�i�1=2ÞÞ ¼ kþðQ�i�1=2Þ ¼ Ui þ

ffiffiffiffiffiffiffiffi
gH i

p
; ð56bÞ
when the left state is initially dry (H i�1 ¼ 0). In each case, only one of the Einfeldt speeds has been modified to
reflect the speed of the wet dry interface, and the other unchanged Einfeldt speed corresponds to the speed of
the rarefaction adjacent to the initial wet state (as can easily be shown by calculating the Roe speed). See
Fig. 2.

In the next section we will show how we can generalize the Einfeldt speeds, so that they better reflect the
true wave speeds as well as approach (55) or (56) as Hi or Hi�1 approaches zero.

For many dry state Riemann problems over variable topography, the source term must typically be
adjusted for most schemes, since a discretization of �ghbx involves the difference Bi � Bi�1, which is physically
irrelevant if Bi or Bi�1 is much greater than the water level. (Such as would occur at a steep shoreline.) See, for
instance, [2]. The approach we take is to solve a homogeneous Riemann problem to determine the relevant
value of Bi or Bi�1 when H i ¼ 0 or Hi�1 ¼ 0 respectively. For instance, if Hi ¼ 0 and Hi�1 þ Bi�1 < Bi, we first
solve the homogeneous Riemann problem with ghost values in cell Ci: Bi ¼ Bi�1, H i ¼ H i�1 and
HU i ¼ �HU i�1, which simulates a wall boundary condition. The resulting middle state solution (H �i�1=2) to
the homogeneous problem determines the maximum height that water in cell Ci�1 would rise up a wall. The
original Riemann problem is then solved as a normal dry state Riemann problem with Bi replaced by
maxðBi;H �i�1=2 þ Bi�1Þ. The analogous procedure is taken when the left state is dry and Bi�1 > H i�1 þ Bi�1.

5.3. Generalization of the Einfeldt speeds and implementation

For exact Riemann solutions, the wave (whether a rarefaction or shock) in one field never surpasses the
characteristics in the other field—waves in the first field are never greater in speed than waves in the second
(see e.g. [27]). For dry state problems, the wave in one field becomes as fast as the wave in the other field, so we
have let �s�i�1=2 ¼ kþ�i�1=2 when Hi�1 ¼ 0 or �sþi�1=2 ¼ k��i�1=2 when H i ¼ 0. However, for problems near a dry state, it
is possible that our speed estimates are such that �sþi�1=2 < k��i�1=2 when H i is very small, or kþ�i�1=2 < �s�i�1=2 when
Hi�1 is small. We therefore redefine the Einfeldt speeds, for all Riemann problems, by
�s�i�1=2 ¼ minðk�ðQi�1Þ; k̂�i�1=2; k
þ�
i�1=2ðH �i�1=2ÞÞ; ð57aÞ

�sþi�1=2 ¼ maxðkþðQiÞ; k̂þi�1=2; k
��
i�1=2ðH �i�1=2ÞÞ ð57bÞ
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recognizing that these speeds still usually correspond to one of the first two arguments in the min or max, as
depicted in Fig. 1. (By using the secant estimate for H �i�1=2 described in Appendix B, it can be shown that
k��ðH �i�1=2Þ is never actually greater than the speed of a true shock in the second characteristic family, and
kþ�ðH �i�1=2Þ is never actually less than the speed of a true shock in the first family (see [14]). The inclusion
of k
�ðH �i�1=2Þ in the definition of our speeds �s�i�1=2 in (57) is therefore never unjustified with respect to the true
Riemann structure.) Another advantage to using (57) is that it corresponds to (55) and (56) if one state is dry
by simply omitting the speeds that are undefined in each case. That is, if H i ¼ 0, then Ui is undefined and the
quantities kþðQiÞ and kþ�i�1=2ðH �i�1=2Þ are omitted from (57). If Hi�1 ¼ 0, then Ui�1 is undefined and the quan-
tities k�ðQi�1Þ and k��i�1=2ðH �i�1=2Þ are omitted from (57). By a simple calculation of the Roe speeds, it can easily
be shown that the speeds (57) then correspond to (55) when the right state is initially dry (Hi ¼ 0), and cor-
respond to (56) when the left state is initially dry(H i�1 ¼ 0).

In summary, to implement the modifications described in this section, the only added complexity to the
original solver is the estimation of H �i�1=2 and establishing some criteria that determines if the alternative form
of fw2

i�1=2; s
2
i�1=2g should be used for a given Riemann problem. The latter can be based on the value of H �i�1=2

compared to the initial data Hi and Hi�1. For problems with a large rarefaction, H �i�1=2 << maxðHi;H i�1Þ,
indicating a rarefaction in one field. In this case, the alternative form for fw2

i�1=2; s
2
i�1=2g might provide a better

approximate Riemann solution. In shallow regions, where H �i�1=2 approaches zero and s2
i�1=2 approaches s1

i�1=2

or s3
i�1=2, the original form for fw2

i�1=2; s
2
i�1=2g should be resorted to, providing depth non-negativity and line-

arly independence of the vectors wp
i�1=2. In all cases fw1

i�1=2; s
1
i�1=2g and fw3

i�1=2; s
3
i�1=2g are defined by (35) using

the generalized Einfeldt speeds (57) (assuming undefined speeds are omitted given an initial dry state).

6. Numerical tests and results

The Riemann solver described in this paper provides a set of waves and fluctuations necessary for the high-
resolution (second-order) wave propagation method, given by (7). For additional details on implementing the
wave propagation method (for instance the use of correction terms and limiters), see [27,25,14]. In the figures
and references in this section we will refer to our algorithm as the ‘A4WS’ method, for Augmented 4-Wave

Solver, since it is based on an augmented system—equations (31). Below we show some numerical results using
our method for several one-dimensional test cases. The first two problems are chosen for the sake of compar-
ison to other algorithms since these problems have been commonly applied and test maintenance of steady
state flow over a hump. Finally, we introduce a one-dimensional problem to test tsunami propagation and
inundation. See [15,29,14,16] for some two-dimensional tsunami simulations with adaptive mesh refinement
using extensions of the algorithms presented here.

6.1. Subcritical steady flow

This first problem tests convergence to subcritical flow over a hump, and is borrowed from [8]. The domain,
boundary and initial conditions are
hðx; 0Þ ¼ 2:0� bðxÞ; huðx; 0Þ � 4:42; 0 6 x 6 25; ð58Þ
huð0; tÞ ¼ 4:42; hð25; tÞ ¼ 2:0; 0 6 t 6 200 ð59Þ
and the bottom topography is given by
bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 < x < 12;

0 otherwise:

(
ð60Þ
We computed this problem using 200 grid points, as in [8], and with 50 grid points. Fig. 3 shows the numerical
solution at t ¼ 200 using the A4WS method. The goal of the problem is to investigate convergence to a non-
stationary steady state. With older schemes based on traditional Riemann solvers and fractional stepping, spu-
rious oscillations would typically appear near steep gradients in the bathymetry. See, for instance, the papers
[3,26]. Convergence to the steady state without oscillations is most easily judged by observing the momentum
hu, which should be constant. Table 1 shows the l1 error for hu for the subcritical flow over a hump problem,



Table 1
The l1 error for hu for the A4WS method is compared to the relaxation method described in [8] using 200 grid points

Method l1 error for hu ðl1 error for huÞ=h ðl1 error for huÞ=Dx

A4WS 3:0� 10�6 1:5� 10�6 2:4� 10�5

Relaxation [8] � 5:0� 10�3 � 2:5� 10�3 � 4:0� 10�2

A4WS (50 points) 3:2� 10�6 1:6� 10�6 6:4� 10�6

The A4WS error using 50 points is also shown.
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Fig. 3. Subcritical steady flow over a hump. A4WS numerical solution at t ¼ 200. (a) Surface elevation (gðx; 200Þ ¼ Hðx; 200Þ þ BðxÞ)
computed with 200 grid points (	) and 50 grid points (+). Bathymetry is shown as a solid line. (b) Close-up of the momentum HU

computed with 200 points (	) and 50 points (+). The true steady state solution is a constant hu � 4:42. To show the error, the vertical axis
scale is greatly magnified: 4:42� ¼ 4:42� 10�5.
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comparing the A4WS method to the relaxation method described in [8], indicating the degree to which the
steady state is maintained. (The error for the relaxation method is interpreted from figures in [8], and is there-
fore only roughly approximate.) Since maintenance of the steady state at any given grid resolution is an impor-
tant property of tsunami modeling, we also computed the problem using 50 grid points to test the accuracy of
steady state maintenance even on very coarse grids.

6.2. Transcritical steady flow with a shock

This one-dimensional test, borrowed from [4], was originally computed in [18] and later discussed in [11].
The domain, boundary and initial conditions are
hðx; 0Þ � 0:33; huðx; 0Þ � 0:18; 0 6 x 6 25; ð61Þ
huð0; tÞ ¼ 0:18; hð25; tÞ ¼ 0:33; 0 6 t 6 200 ð62Þ
and the bottom topography is again given by
bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 < x < 12;

0 otherwise:

(
ð63Þ
The eventual steady state solution contains a critical point and stationary shock. (Stationary and slow
moving shocks are notorious for generating spurious oscillations, even for shock-capturing schemes
[1,23].) Fig. 4 shows the solution for this test problem, at t ¼ 200, using 200 and 50 grid points. The steady
state should have hu constant throughout the domain, even through the shock (though the exact solution
does not appear to have completely reached steady state to the right of the shock at t ¼ 200). The A4WS
method maintains the smooth steady state without oscillations even on the very coarse grid using 50
points, presumably due to the form of the steady state wave w0

i�1=2. (While maintaining the steady state
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Fig. 4. Transcritical flow with a shock. A4WS numerical solution at t ¼ 200. (a) The surface elevation gðx; 200Þ ¼ Hðx; 200Þ þ BðxÞ
computed with 200 points (	) and 50 points (+). Reference solution (computed with 2000 points) and bathymetry are shown as solid lines.
Spurious oscillations are absent near the stationary shock or rapidly varying bottom surface. (b) Close-up of the momentum HU

computed with 200 points (	) and 50 points (+). The true steady state solution should be constant hu � 0:18. The vertical axis is greatly
magnified: 0:18� ¼ 0:18� 10�4.
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does not appear to require a fine grid, the surface elevation gðx; tÞ is clearly more accurate near the max-
imum in bðxÞ on the finer grid.) Bouchut computed this problem using four modern numerical schemes, on
200 point grids as described in [4]. Like the A4WS method, three of those four methods (all but the
VFRoe scheme) are free of spurious oscillations in the depth H near the stationary shock, and all of
the methods are free from oscillations in H over the rapidly varying bathymetry. However, the three most
accurate methods exhibit much larger oscillations in HU to varying degrees near the shock when compared
to A4WS (see Table 2 or figures 6.6–6.10 in [4]).

Table 2 shows the l1 error for hu for the transcritical shock problem for the A4WS method and the three
accurate methods tested in [4], indicating the degree to which the steady state is maintained at given grid res-
olution. The error for the other three methods is interpreted from figures in [4], and is therefore only roughly
approximate. (The single grid cell containing the shock is omitted from the error calculation in all cases, since
the value of HU in that cell is immaterial due to the intermediate depth.) The error using A4WS with 50 grid
points is also shown for comparison.

6.3. Test of tsunami propagation and inundation

In this section we introduce a one-dimensional problem as a test for modeling tsunami propagation and
inundation. The bathymetry is a simple idealization of an ocean basin and continental shelf, and the initial
profile reflects the scales of a typical tsunami. We perform this test on a one-dimensional grid with
non-uniform fixed grid spacing to enable inundation modeling on a much finer grid than deep ocean
propagation. Although we typically use adaptive mesh refinement for real tsunami simulations
(e.g. [29,15,14,16]), the one-dimensional fixed non-uniform grids were chosen to facilitate future
comparisons.
Table 2
The l1 error for hu for the A4WS method is compared to that of three methods tested in [4], using 200 grid points

Method l1 error for hu ðl1 error for huÞ=h ðl1 error for huÞ=Dx

A4WS 3:89� 10�5 1:18� 10�4 3:07� 10�4

Suliciu [4] � 1:1� 10�2 � 3:3� 10�2 � 8:8� 10�2

Kinetc [4] � 5:0� 10�3 � 1:5� 10�2 � 4:0� 10�2

Hydrostatic[4] � 7:5� 10�3 � 2:7� 10�2 � 6:0� 10�2

A4WS (50 points) 1:43� 10�4 4:32� 10�4 2:85� 10�4

The A4WS error using 50 points is also shown.
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This problem is computed in units of kilometers, on 0 6 x 6 3200. The bathymetry is given by
Fig. 5.
bðxÞ ¼

�4:120þ 3e�ð
x�2500

50 Þ
2 þ 4e�ð

x�3000
50 Þ

2

; if x < 3000;

�0:120þ 10�3ðx� 3000Þ; if 3000 6 x 6 3100;

�0:020þ 10�1ðx� 3100Þ; if 3100 6 x 6 3100:4;

0:020þ 10�3ðx� 3100:4Þ; if 3100:4 6 x:

8>>>><>>>>: ð64Þ
As shown in Fig. 5, the function (64) gives an ocean basin 4.120 km deep that is punctuated by a mid-ocean
ridge at x ¼ 2500, and rapid continental rise that transitions to a gradual (0.1%) linearly sloping continental
shelf at x ¼ 3000. At x ¼ 3100 a steeper (10%) linear beach interrupts the gradual continental shelf for 400 m,
rising from �20 to +20 m. These dimensions roughly reflect real ocean bathymetry in magnitude and scale,
though this bathymetry is obviously much smoother than real bathymetry and topography. We computed this
problem using a grid with three different spacings. In the deep ocean region, 0 6 x 6 2900, we used grid cells
with Dx ¼ 1 (km). Over the continental shelf, 2900 6 x 6 3100, Dx ¼ 0:1 (km), and for the beach,
3100 6 x 6 3100:4, Dx ¼ 0:5� 10�3 (km). This allows the inundation to be accurately and efficiently resolved
on 0.5 m grid cells. (We used a variable Dt, equal on all grid spacings, with a maximum Courant number of
0.99 for each time-step.)

The initial tsunami displacement is given by
gðx; 0Þ ¼ 10�4ðx� 1000Þe�ðx�1000
100 Þ

2

; if 500 6 x 6 1500;

0; otherwise;

(
ð65Þ
which gives the initial depth hðx; 0Þ ¼ gðx; 0Þ � bðxÞ. The initial momentum is zero (huðx; 0Þ ¼ 0). The initial
profile, shown in Fig. 6(a), gives a disturbance approximately 4 m in amplitude and about 500 km in extent,
reminiscent of the initial profile of a fairly large teletsunami.

The numerical challenges of this problem are: (1), accurately resolving the small deviation from the steady
state that is the tsunami propagating over thousands of kilometers, (2), robustly and accurately capturing
near-shore propagation containing incident and reflected bores, and (3), resolving the wet–dry interface that
represents the moving shoreline during inundation. Note that the ratio of tsunami amplitude to ocean depth is
� 10�3 (smaller than some of the relative errors in hu shown in Tables 1 and 2), and the grid spacing is roughly
equivalent to the ocean depth. This implies that Riemann problems near the tsunami are very nearly steady-
state data on a very coarse grid, and resolving the tsunami requires precisely preserving this steady-state data.
Fig. 6 shows the propagating tsunami and near-shore inundation at several times. As can be seen in frame (b),
near-linear propagation occurs over much of the domain, before nonlinear compression, steepening and reflec-
tion, seen in frame (c). The initial inundation of the beach, from t � 14000–16000 (s), occurs with two incident
bores which are subsequently reflected seaward as seen in frames (d)–(f). The inundation is also shown in
Fig. 7, which shows run-up as a function of time.
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Bathymetry for the idealized ocean basin and continental shelf. (a) Entire domain. (b) Close-up of the continental shelf and beach.
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Fig. 6. Tsunami propagation. Figures show gðx; tÞ at six different times. (a) The initial displacement. (b) The initial wave divides and
propagates in each direction, leading to deep ocean amplitudes �2 m. (c) The wave is compressed and heightened as it approaches the
shallow continental shelf, and reflected waves from the mid-ocean ridge can be seen propagating to the left. (d) Close-up showing the initial
wave approaching the beach. (e) The beach near the time of maximum run-up from the first incident bore, which is reflected seaward. (f) A
second bore approaches the beach as the first reflected bore on the left propagates seaward.
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Fig. 7. Run-up at the shoreline as a function of time. (a) The height of the shoreline gðxsðtÞ; tÞ, where xsðtÞ denotes the horizontal location
of the shoreline, is plotted as a function of time. Run-up of over 10 m occurs indicating a horizontal inundation of over 100 m. The effects
of the incident bores can be seen at t � 13700 s and t � 15800 s. (b) Closer view of the maximum run-up and draw down period.
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7. Conclusions

We have described an approximate Riemann solver for the shallow water equations that decomposes an
augmented state variable—the depth, momentum, momentum flux, and bathymetry into four propagating
discontinuities or waves. By using all four of these quantities in the decomposition, and by defining the
eigenvectors used for decomposition appropriately, we are able to maintain several nice features in the
approximate solution. First, large rarefactions are automatically divided into two discontinuities—providing
a more accurate approximate solution for such problems and a natural entropy fix for transonic rarefac-
tions. Second, shock-wave solutions are captured since the solver is equivalent to the Roe solver for such
Riemann problems. Third, discretized smooth steady states over variable bathymetry, and the motionless
ocean at rest steady state over any bathymetry, are exactly preserved since the Riemann decomposition
in such a case contains only a stationary discontinuity, or steady state wave. Finally, the solver preserves
depth non-negativity in the Riemann solution since it is equivalent to the HLLE solver (for mass) when
source terms are absent, and by imposing suitable bounds on the stationary eigenvector in the presence
of a source term. These properties make the solver appropriate for modeling the shallow water equations
when steady states and dry cells exist, such as in the context of tsunami propagation and inundation mod-
eling. These properties are accomplished when the solver is implemented with LeVeque’s wave propagation
algorithms [25].
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Appendix A
Proof of Theorem 1. In this appendix we prove Theorem 1. Consider a smooth steady state between two
points, xl and xr, surrounding varying bathymetry. (We will use subscripts ðÞl and ðÞr on variables to denote
evaluation at xl or xr respectively. Additionally, we will use D to denote differencing such quantities,
DðÞ ¼ ðÞr � ðÞl.) For all smooth steady states ðhuÞx � 0, and therefore
DðhuÞ ¼ 0: ðA:1Þ

Using this fact, we can relate the difference in the momentum flux,
Du ¼ uðqrÞ � uðqlÞ; ðA:2Þ

to the difference in the depth Dh ¼ ðhr � hlÞ. We write (A.2) explicitly, and rearrange, denoting hu ¼ hur ¼ hul,
Du ¼ hu2 þ g
2

h2
� �

r
� hu2 þ g

2
h2

� �
l
¼ ðhuÞ2

hr
� ðhuÞ2

hl

 !
þ g

2
ðhr þ hlÞðhr � hlÞ

¼ jðhuÞrðhuÞlj
hr

� jðhuÞlðhuÞrj
hl

� �
þ g

2
ðhr þ hlÞðhr � hlÞ

¼ hljurulj � hrjulurjð Þ þ g
2
ðhr þ hlÞðhr � hlÞ ¼ Dh �jurulj þ

g
2

hr þ hlð Þ
� �

; ðA:3Þ
where h P 0 and hur ¼ hul together imply that urul ¼ jurulj. We therefore have across the steady state
Du ¼ �gkþk�ðqr; qlÞDh: ðA:4Þ
We will later show that Dh must be non-zero (assuming that Db is non-zero).
We can also relate Dh to Db for smooth solutions. Note that for a steady state
hu2 þ g
2

h2
� �

x
¼ �ghbx: ðA:5Þ
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Together ðhuÞx ¼ 0 and (A.5) imply that
ð�u2 þ ghÞhx ¼ �ghbx: ðA:6Þ

Note that (A.6) implies that a (smooth) sonic point cannot occur over varying bathymetry, and furthermore
that hx must be non-zero over varying bathymetry. Again, for steady states, (A.6) and ðhuÞx ¼ 0 imply that
1

2

ðhuÞ2

h2
þ ghþ gb

 !
x

¼ 0; ðA:7Þ
which implies that
1

2
u2 þ ghþ gb

� �
r

¼ 1

2
u2 þ ghþ gb

� �
l

: ðA:8Þ
Multiplying (A.8) by �h ¼ 1
2
ðhr þ hlÞ and rearranging gives,
�g�hDb� g�hDh ¼ hr þ hl

2

� �
u2

r � u2
l

2

� �
¼ 1

2

� �2

hru2
r þ hlu2

r � hru2
l � hlu2

l

 �
¼ 1

2

� �2

ðð2hru2
r � hru2

r Þ þ hlu2
r � hru2

l � 2hlu2
l � hlu2

l

 �
Þ

¼ 1

2

� �2

ðð2hlulur � hru2
r Þ þ hlu2

r � hru2
l � ð2hrurul � hlu2

l ÞÞ

¼ 1

2

� �2

ððhlu2
l þ 2hlulur þ hlu2

r Þ � ðhru2
l þ 2hrulur þ hru2

r ÞÞ

¼ 1

2

� �2

hl ur þ ulð Þ2 � hrður þ ulÞ2
� �

¼ � ur þ ul

2

� �2

Dh; ðA:9Þ
where the fourth equality makes use of hlul ¼ hrur. Eq. (A.9) implies the relationship
ð��u2 þ g�hÞDh ¼ �g�hDb; ðA:10Þ

where �u is the arithmetic average 1

2
ðul þ urÞ. Eq. (A.10) is a discrete representation, or Taylor series of (A.6),

using special averages. It is equivalent to
kþk�ðql; qrÞDh ¼ g�hDb: ðA:11Þ

Note that (A.1), (A.4) and (A.11) together imply that for a smooth steady state over varying bathymetry,
where Db 6¼ 0, the following difference is satisfied:
D

h

hu

u

b

26664
37775 ¼ Db

gHðqðxl;tÞ;qðxr ;tÞÞ
kþk�ðqðxl;tÞ;qðxr ;tÞÞ

0

�g eH ðqðxl; tÞ; qðxr; tÞÞ
1

266664
377775: ðA:12Þ
Note that the derivation of (A.1), (A.4) and (A.11) did not require bathymetry with a net variation, only a
smooth steady state. However, for the case where Db 6¼ 0, the terms in the vector on the right hand side of
(A.12) are always defined since kþk�ðql; qrÞ cannot be zero, which follows from (A.11). (Of course, if
Db ¼ 0, the form of w0

i�1=2 is irrelevant since no source term appears in such a Riemann problem.)
Appendix B. Brief summary of the determination of the Riemann structure

In this appendix we provide a brief summary of the procedure for determining the structure of the exact
Riemann solution for the shallow water equations. (By ‘‘structure of the exact Riemann solution”, we mean
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whether each characteristic field has a shock or rarefaction.) We provide this for completeness and conve-
nience to the reader—for the derivation of the formulas and further explanation, see [37] or [14]. The structure
of the Riemann problem can be determined by evaluating a nonlinear function, using the initial Riemann data,
Hi, H i�1, Ui and Ui�1. (We ignore the case where Hi ¼ 0 or Hi�1 ¼ 0, since then the Riemann structure is
known to be a single rarefaction.) We first define
/ðh; HiÞ ¼
2

ffiffiffiffiffi
gh
p

� ffiffiffiffiffiffiffiffi
gH i

pð Þ if h 6 Hi;

h� H ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2

1
hþ 1

Hi

� �r
if h > Hi

8<: ðB:1Þ
for h > 0. Now we define the function
Ui�1=2ðhÞ ¼ /ðh; H iÞ þ /ðh; H i�1Þ þ U i � U i�1 ðB:2Þ
for h > 0. Since Ui�1=2ðhÞ is a monotonically increasing function of h (see [37]), the Riemann structure is deter-
mined by establishing one of the following three possibilities:
Case 1 : Ui�1=2ðHminÞ 6 Ui�1=2ðHmaxÞ 6 0() two shocks; ðB:3Þ
Case 2 : Ui�1=2ðHminÞ < 0 < Ui�1=2ðH maxÞ () shock and rarefaction; ðB:4Þ
Case 3 : 0 6 Ui�1=2ðH minÞ 6 Ui�1=2ðH maxÞ () two rarefactions; ðB:5Þ
where H max ¼ maxðH i;Hi�1Þ and H min ¼ minðH i;Hi�1Þ. In then event of CASE 2, H i�1 < H i implies a shock in
the first family, and H i�1 > Hi implies a shock in the second.

Additionally, the root of Ui�1=2ðhÞ corresponds to the middle state depth:
UðH �i�1=2Þ ¼ 0: ðB:6Þ
In the event of CASE 3, the root can be exactly determined by solving for h in (B.2), giving
H �i�1=2 ¼
1

16g
2 maxð0;

ffiffiffiffiffiffiffiffi
gHi

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
gH i�1

p
� Ui þ U i�1Þ2

� �
: ðB:7Þ
For Case 2, the root of the linear secant connecting Ui�1=2ðH minÞ to Ui�1=2ðH minÞ gives a good approximation to
the true middle state depth H �i�1=2, and is always greater than the true middle state depth since Ui�1=2ðhÞ is
convex.
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